AIM-65
FLOPPY DISK

SUBSYSTEM AH5050

The AH5050 offers a powerful yet inexpensive mass
storage subsystem for the AIM 65 Microcomputer. Itis
fully compatible with the AIM 65’s Editor, Assembler,
Monitor, FORTH and Basic. Sequential, Random or
Relative File types are supported. The AH5050 sub-
system offers the capability of opening up to 10 files
simultaneously, with features such as pattern matching
and wild card file searches found only in larger systems.
The file manager accessed through the “F1" key of the
AIM 65 offers standard commands for Directory, Rename,
Transfer, Delete, Format, Clear-plus special commands
to run Command files.

New BASIC and FORTH instructions such as OPEN,
CLOSE, CHIN, CHOUT allow manipulation of disk data
files during program execution. Other commands such
as SAVEB/LOADB, store and retrieve BASIC or FORTH
programs in binary form. This offers the user the
capability to run BASIC programs like ordinary binary
files even on power up. The AH5050 also includes
Centronics and RS-232 compatible interfaces with
supporting software.

FEATURES
* Fully compatible with the AIM 65 Microcomputers
BASIC, EDITOR, MONITOR, ASSEMBLER and FORTH

e Subsystem package includes intelligent controller,
drive, power supply, case, cables, manual and software

e Added new commands to AIM BASIC and FORTH
languages

e No motherboards or adaptor cards required. AIM 65
expansion connector remains free for other uses

e Compact size

e Centronics and RS-232 Interfaces

—> FLOPPY CONTROLLER

POWER

SUPPLY i

INTERFACE

DRIVE

INTERFACE

e Access to Sequential, Random and Relative type of
files

e Wild card file searches
e Capability to open up to 10 files simultaneously

¢ File Manager commands:

Directory Rename Clear
Transfer Merge Initialize
Format Scratch Validate
Put Run

EXPANDED APPLICATION CONNECTOR

S

DISK

BUFFERS

VOLTAGE

CONVERTION|

CONNECTOR

i

APPLICATION CONNECTOR

4
RS-232 H PRINTER

AIM 65

AH5050 FUNCTIONAL CAPABILITIES

The AH5050 Floppy Disk Subsystem is an inexpensive
mass storage unit for the AIM 65. The AH5050 is
designed for applications where low price is required,
such as data acquisition, controllers, testers, etc. The
AH5050 includes a floppy disk drive, intelligent floppy
controller, power supply case, interface and software
for the AIM-65 microcomputer.

The AH5050 is interfaced to the AIM-65 through the
application connector using 5 lines of the User 6522
VIA.

The software for the AH5050 is initialized once upon
power up. After the initialization access to the file
management is done through the “F1” key and access
to the files is done through the “user” vector in the AIM-
65.

Access to files from the AIM-65 microcomputer's BASIC,
Editor or Monitor is obtained through the existing
commands of “Save / Load’, “List / Read"’, “Dump /
Load" respectively. Additional commands such as
OPEN, CLOSE, CHIN, CHOUT, PRINT #, INPUT #,
CMD, STATUS, SAVEB, LOADB; enhance the AIM
BASIC and FORTH Languages so the user can
manipulate sequential, Random or Relative Data files.
BASIC and FORTH Programs can be saved and loaded
in binary form. These binary files load very quickly since
they are already in executable form. It is possible to
automatically load and run a binary file upon power-up
ofthe AIM. This virtually eliminates the need for storage
of application programs in PROM.

The software opens and closes files automatically. The
user has the capability to open up to ten files simul-
taneously.

SPECIFICATIONS \

k Storage
Total Capacity 174848 bytes per diskette
_Sequential 168656 bytes per diskette
Relative 167132 bytes per diskette

Directory entries 144 per diskette

Sectors per track 17 to 21
Bytes per sector 256
Tracks 35

Sectors 683 (644 free)

Power Requirements

Voltage
Frequency
Power

100, 120, 220, or 240 VAC
50 or 60 Hertz
25 watts

Physical

Height
Width
Depth

3.8 inches
7.9 inches
14.7 inches

Miscellaneous Requirements

Free air operating Temperature: 0° to 55°C
Storage Temperature: +40° to 75°C

Operating humidity: 5% to 95% non-condensing
3" interface cable

Can be used with standard 5%", single sided, single
density soft sectored diskettes.

USERS’ MANUAL

To obtain the User's Manual for the AH5050, ask for
ABM document No. AL5051

ORDERING INFORMATION

AH5050: U.S. Floppy Disk Subsystem for AIM 65

AH5050E: Euro Floppy Disk Subsystem for AIM 65

AH5052: U.S. Floppy Disk Subsystem for CMOS CPU

AH5052E: Euro Floppy Disk Subsystem for CMOS
CPU

List Price: $495

ABM Systems reserves the right to make changes to any products herein to improve reliability, function or design.
ABM Systems does not assume any liability arising out of the application or use of any product or circuitdescribed
herein.

ABM Systems

14461 Silverbrook

AL5050
5/83

Tustin, CA 92680 (714) 832-7336

ki

1
i

3o 33 3 I3 06 3 S I I I MK H R F R R R

: - ”
R Y A Ry

- r—— t—r = ———rr ———

[—— - PR I m et .t mAT R T I T e T T T e Y e = = = T P —_—

% sk s ok %k ok sk ok ok
K ok sk ok &k sk ok o K

36 63636 F6 303036 03036 36 3696 H 36 3630 2 36 3030 3030 S I 36 3095 2 36 36 3630 3 30 34

Specifications Subject to Change Without Notice

October 1 1983

AL505/

[—

AH5050

AH 5050 DISK SUBSYSTEM

Section 1: General Information

1.1 Introduction
1.2 Features

1.3 General Description
1.4 Specifications

Section 2: Installation

2.1 Introduction

2.2 Inspection

2.3 Installation

2.4 Memory Map

2.5 Disk Connector

2.6 Printer Connector

2.7 RS-232 Connector

2.8 Extended AIM Connector

s>ection 3: Operating System

Introduction
Initiglization
File Name and Types (Seq,Prog,Rel)

Pattern matching, wild cards and replace

Log Files/and Log Devices

File Management (DIR,TYP,NAM,FRMT,CLR,MRG,PUT,GET,RUN...)
Existing Scoftware Interface (MONITOR,EDITOR,ASSM,BASIC)
Machine Language Subroutines

da

D Lo W W W W W W
QO ~J it &~ 00 N -~

Appendix A: Internal Structure
Appendix B: Error Summary
Appendix C: Command Summary

Appendix D: Interface Module Schematic

AH5050

SECTION 1
GENERAL INFORMATION

1.1 INTRODUCTION

Welbome to the easiest, most efficient, most powerful and most
inexpensive filing system for your AIM 65 microcomputer, the AH5050
floppy disk system,

The intelligent AH5050 Floppy system consists of a 5"1/4 disk drive, a
6502 CPU based controller with 16K bytes of software in ROM, power supply
and case. In addition there is 4K bytes of software in PROM installed in
the AIM 65 to handle all interfaces so they are transparent to the user.
The interface module that plugs on the application connector of the AIM
65 also expands the capabilities o¢f the microcomputer by providing
Centronic's type parallel and RS-232 serial I/0 ports. -

1.2 FEATURES

¥ Fully integrated with the AIM 65 Microcomputer's Basic, Editor,
Monitor, Assembler and Forth.,

Subsystem package includes intelligent controller, drive, power
supply, case, cables, manual and software.

*¥ Added new commands to AIM BASIC and FORTH languages.

*¥ No expensive motherboards required. Free AIM Expansion
connector.

¥ Centronics and RS-232 type Interfaces..

¥ Sequential, Random and Relative files supported.
¥ Wild card & pattern matching features.

¥ Capability to open up to 10 files simultaneously.

¥ File Manager built-in: Directory, Type, Format, etc.

1.3 GENERAL DESCRIPTION
The AH5050 allows you to store up to 144 files on a 5"1/4 disk.

Included in the drive is circuitry for both the disk controller and a
complete disk operating system, a total of 16K of ROM and 2K of RAM
memory. This circuitry makes the AH5050 an "intelligent" device. This
means that the AH 5050 does it's own processing without requiring any
memory from your AIM 65 computer.

The AH5050 Floppy system contains a dual 'serial bus" interface. The
signals of this bus resemble the parallel IEEE-488 interface used in

AH5050

communicate data
drive allows more
time. This is
Up to 4 drives

other computers, except that only one wire is used to
instead of eight. The two ports at the rear of the
than one device to share the serial bus at the same
accomplished by "daisy-chaining" the devices together.
and one printer can share the bus simultaneously.

1.4 SPECIFICATIONS -

Storage:

Total capacity
Sequential files
Relative files

Directory entries
Sectors per track
Bytes per sector

Tracks
Blocks

Physical:
Height
Width
Depth

Electrical:

Power Kequirements

Voltage
Frequency
Power

Media:

Diskettes

174848 bytes per diskette
168656 bytes per diskette
167132 bytes per diskette
65535 records per file
144 per diskette

17 to 21

256

35

683 (664 blocks free)

97 mm °
200 mm
374 mm

100, 120, 220 or 240 VAC
50 or 60 Hertz
25 Watts

Standard mini 5 1/4", single sided, single density

AH5050

SECTION 2
INSTALLATION

2.1 INTRODUCTION

This section contains instructions for inspection and installation of the
AH5050 system. This section also contains memory map o¢f the system to
avoid any conflict with other modules.

2.2 INSPECTION

Upon receipt of the AH5050 system, inspect it for any broken, damaged, or
missing parts. Included with the AH5050 drive unit you should find a
power cable,a serial bus cable,an interface board,a PROM and a manual.

2.3 INSTALLATION

Be sure to disconnect all power before making any attempt to install the
interface board. The interface to the disk and printer requires only
+5Vdc. The current loop interface in the AIM 65 is converted into a
voltage interface so it can be used to drive RS-232 devices. Although
the voltages used to drive the RS-232 port are not the full specified +/-
12 Vdc, they are sufficient since the threshold for RS-232 devices is set
at +/- 3Vdc. In this way there is no need for an additional power
supplies of +/- 12 Vdc.

2.4 MEMORY MAP

The AH5050 interfaces to the AIM 65 through the on-board user 6522 VIA
device using just 5 signals. Additional signals from this device are used
if an interface to a Centronics printer is desired. A powerful operating
system resides in the controller itself. But a PROM of 4K bytes
installed at $DO00 (the assembler socket) is required for the file
management handling, expanded instructions for the BASIC, FORTH and
general interface to the Fditor, Assembler and Monitor on the AIM 65,

A minimal amount of RAM memory is used for variables and pointers as
shown in the diagram. |

FFFF

E000
DFFF

DOOO

cCo00

‘BOOO

FIGURE 2.1
MEMORY MAP

AIM
MONITOR

DFFF
AH5050
DOS
(Assembler

socket) | N

BASIC
OR

CO00
FORTH

OR

ASSEMBLER

user

Lk Lk O R R F & &8 % __J __J & _ :

AH5050 |
VARIABLES |

. £ "% ""r"""w ¥ - ¥ g T ¥ ¥ . F " WS T - N

A e, Sl g Sl JELES G S DL TG RN SN A

- YAKA RS

. r 5 v " . J x5 K ___ X I 1 N]

T Y e Sy Pt B SR Sy whriiey Wi mmivele slmve e

AR A e s AR S AL e e SN S

AH5050

AH5050

2.5 DISK CONNECTOR

The AH5050 Floppy drive interfaces to the AIM 65 through a serial bus
cable which has the same connector on both ends,a 6-pin DIN plug which
attaches to the interface board or another drive. The signal pin-out of
this cable (J2) is shown below.

FIGURE 2.2
DISK INTERFACE (J2)

PIN DESCRIPTION

SERIAL SRQ 1IN
GND
SERIAL ATN I/0
SERIAL CLK 1/0
SERIAL DATA I/0
GND

Oy n & W o e

2.6 PRINTER CONNECTOR

Another connector (J3) in the interface board is provided for printer
interface. Figure 2.3 shows the pin assignment of this connector. The
interface is Centronics type parallel with 8 data lines, one Strobing and
one Acknowledgeling for proper handshaking. The handshaking of data is
controlled by the software that operates the I/0 device.

FIGURE 2.3
PRINTER PIN ASSIGNMENT (J3)

STROBE (CA2) —— |1 —rY Ty

DATA O ——= {3 ~-——GND

DATA 1 - 15 ~~-GND

DATA 2 - |7 -~-GND

DATA 3 —— {9 -—-GND

DATA & — 11 | ~—~GND

DATA 5 -— 11 ~~GND

DATA 6 - 11 ---GND

DATA 7 — 11 -~-GND
ACKNOWLEDGE (CAl) --- -—-GND
NOT USED — -—-NOT USED
NOT USED _— -—-NOT USED
NOT USED - ——-NOT USED

2.7 RS-232 CONNECTOR

There are 4 signals used to interface to RS-232 compatible devices. The

signals are obtained from the current loop offered in the AIM 65. Figure
2.4 shows the connector used (J4).

AH5050

FIGURE 2.4
RS-232 INTERFACE (J4)

PIN AH5050 MODULE CONNECTION TO RS232 TERMINAL PIN,

1 SERIAL-OUT RD* 3

2 SERIAL-IN TD* 2

3 -5V - - -
4 GND GND 1,7

NOTE: In order to receive the RS-232 signal on pin Y of the AIM 65
Applications Connector the user must change the resistor value of R24
from 1K to 3.3K . Presently in the AIM-65, R24 and R23 provide a divider
circuit which makes it impossible to be able to drive the following input
gate,

The user can connect a terminal to the AIM 65 through the AH5050
interface board. The user must change the KB/TTY switch on the AIM to the
TTY position, press reset and type one key on the terminal so the AIM
calculates the Baud Rate.

The AIM does not properly calculate Baud Rates higher than about 2000.
Nevertheless the user can set the proper baud rates in software by
setting the variables CNTH30 and CNTL30 with values given in the AIM 65
User's Manual. This could be done in the "STARTUP" program (see section

3.2)

2.8 EXTENDED AIM APPLICATION CONNECTOR

This connector is an edge connector. All signals from the AIM 65 are
passed across the interface board to this connector. This connector (J5)
looks exactly like the AIM 65's application connector (J1).

AH5050

AH5050

SECTION 3
OPERATING SYSTEM

3.1 INTRODUCTION ~ -

This section explain the procedures and capabilities of the Disk
Operating System supplied with the AH5050 Floppy System:

The software for the AH5050 Operating System is contained in 16K bytes of
ROM inside the controller and 4K bytes of PROM on the AIM 65.

The disk drive controller is 6502 CPU based, simplifing the handling of
files. However the controller still requires the opening, channel
switching, data transfer and closing of files.

Included in the 4K bytes of software ($D00Q - $DFFF) on the AIM 65 are
the interface subroutines to both the drive and to the AIM 65 existing
software, as well as AIM 65 enhancements for BASIC and FORTH languages .

3.2 INITIALIZATION

To initialize the AHS5050 all the user must do is to start progran
executing at location $D000. This can be accomplished in two ways :
first by pressing the "N" key for the AIM keyboard. The second way will
provide execution upon power-up of AIM 65. This requires the changing of
5> bytes in the monitor at location $E141, to $4C $00 and $DO (JMP $D000).
Substitution of this code can be easily done by reading the ROM at Z2
($EOO0O-$EFFF) into RAM memory, changing the three bytes and burning 4K
bytes back into a 2532 EPROM with a PROM programmer.

Pointers and variables for the AH5050 and the AIM 65 user vectors are
initialized upon execution starting at location $D000. In addition a file
named "START UP" is fetched from the drive and executed. This is a very
powerful feature since the file "START UP" can be created from BASIC,
FORTH or an Assembly program.

The file "START UP" could be used to initialize other devices such as CRT
controllers and then run a BASIC program. Different initializations can
be accomplished by simply changing the file.

The AH5050 System offers the capability to create programs in executable
form from BASIC or FORTH . There is no need for the lengthly process of
loading the source in order to run the programs. Since files in
executable form do not require compiling, the loading into memory is very
fast. The "START UP" program is of this kind. From a user BASIC or
FORTH program other programs in executable form can also be executed.
This allows the running of programs in a very small amount of memory.
Observe that in order to run the "START UP" file, if created in BASIC or
FORTH, the BASIC or FORTH languages must be installed at $BO00-$CFFF.

The starting address of the "START UP" file is recorded in the file, so
execution could be at any place in RAM memory.

~10-

AH5050

If the file "START UP" is not found the AIM-65 will print "File not
found" and return to the Monitor. _

More about this in the BASIC and FORTH interface sections.

—_

3.3 FILENAMES AND TYPES

Files on disk are identified by names of up to 15 character each. File.

names can be made up of any ASCII characters except "@" or ":",

There are essentially three types of files supported, They are
Sequential, Random and Relative. When the directory is 1listed the user
will see file types of the ones from the chart below

SEQ Sequential
PRG Program
REL Relative
USR User

3.3.1 OSEQUENTIAL FILES

s

Sequential files are the most commonly used. They are limited by their
sequential nature, which means they must be read from beginning to end.
The Editor, Assembler, Monitor and BASIC use this type of files to store

programs or text.

For example:

=T (TOP OF EDITOR)
=<I> (LIST TEXT TO
/. A SEQUENTIAL FILE)

It is a good practice if the user specifies something such as "TEX" in
the file name to determine later the origin of the sequential file. For
example 'TEST.TEX' and 'TEST.OBJ' identify one file as created by the
Fditor and the other by the Monitor. Sequential files can be divided
into three catogories which the disk drive treats equally. There are,
sequential files, program files and user files.

The essential difference between sequential files and program files is
that program files normally are made to execute the contents of the file.
Program files contain a start address in the first 2 bytes of data.
Program files are created by new commands in the AH5050 software such as
'"PUT' and 'SAVEB' to put binary data in a file which is dintended to run
as a program later on. |

When a sequential or program file is opened the user must specify the
direction for Read or Write. |

Example:

10 OPEN 3,D1, "O: FILEL,S,W"

-11-

AH5050

Where "S" means sequential and "W" means open for write.

More of this later on.

3.3.2 RANDOM FILES -

Sequential files are fine when working with a continuous stream of data.
The random access feature allows the user to read/write data from/to a
sector on the disk. Although the random access is not really a file, it
has uses of its own, espepecially when working with machine language.
The relative discussed in the next section are more convenient for data
handling operations.

Fach diskette is divided into 683 sectors of 256 bytes each. There are
35 tracks starting with track 1 at the outside to track 35 at the center.
Track 18 is used for the directory, and the DOS fills up the diskette
from the center outward. Since there is more room on the outer tracks,
there are more sectors there as shown below.

Example:

Track Number Sector Range Tofal Sectors
1 to 17 0 to 20 21

18 to 24 U0 to 18 19

25 to 30 O to 17 18

31 to 35 0O to 16 17

Commands are provided for reading and writing directly to any track and
sector on the diskette.

Random files can be created and accessed from machine language or high
level language programs. (See section 3.8 for programing instruction).

- 3.3 RELATIVE

Relative files are designed so the user can access any part of a file at
random, relative to the beginning of a specific file. The user does not
have to read sequentially through all the data in a file until the
desired piece of information is found. Realtive files are structured
into records and into fields within those records.

The DOS in the drive keeps track of the tracks and sectors used and
allows records to overlap from one block to the next. It is able to do
this because it establishes side sectors, a series of pointers for the
beginning of each record. Fach side sector can point to up to 120
records,and there may be 6 side sectors in a file. There can be up to 720
records in a file, and each record can be up to 254 characters long. The
file could be as large as the entire diskette.

The Replace option (next section) does not erase a relative file. The
file can be expanded, read, and written into. To create a relative file

~192-

IS H W LWL,

the record length is given when opening the file. To access and existing
relative file the record length is omitted. See the sections for Machine
Language and High Level Language to interface to Relative files.

3.4 PATTERN MATCHING AND WILD CARDS

When using the AH5050 you can load, delete, type and manipulate files
using what is called pattern matching. The asterisk (¥) 1is a special
character to designate this. For example if you want to load <the first
file on the disk starting with the letters "TE" you can type "TE¥" for
the file name.

Example:

<L> IN=U
DEV=D1 ~ FILE=TE*

If only the "#" is used for the name, the last program accessed on the
disk is the one loaded. If no program has yet been loaded, the first one
listed in the directory is the one used. To delete all files that start
with the letters "FIL" the user can enter:

CF15D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(LR,M(RG,I(NI,V(AL,P(UT,G(ET,R(UN S

DEV=D1 FILE=FIL#*
The question mark "?" can be used as a wild card on the disk. The file
names on the disk are compared to the file name given by the user.
However all characters where there is a question mark in the given name

are not checked. For instance, when a file is specified to be read from
disk such as "C?T", files that match include: CAT, CUT, COT, etc.

If a program already exists on the disk it 1is often necessary to make
some changes and store it back under the same file name. It would be
inconvenient to have to erase the old version and then save the corrected
version.

If the first character of a file name is preceded by character "@" the
AH5050 will erase the data of the file name specified and replace it with
the new data provided. For example to replace a file called "TEST" from
the Editor that has been corrected the user will enter:

=TH> (Top of Editor)
<>
/. (List all lines)

OUT=U (To floppy)
DEV=D1 FILE=@TEST

3.5 LOGICAL FILES AND LOGICAL DEVICES

The AH5050 can support up to 10 logical files at a time. The logical
file numbers can be any number from 2-14. lLogical files 0,1 are reserved
for loading, saving and file management. The logical File number is
issued throughout the program to identify which file 1s being accessed.
The user can open several files simultaneously to different devices, then

—13—

AHS050

data is directed from/to these logical files by switching the input and
output logical file.

Before explaning this in more detail, we will discuss the logical device
names. The devices supported by the AH5050 operating ’‘systems are
assigned a number from O0-11 (decimal). From BASIC, FORTH, and File
Management the user refers to devices by name. For instance, in BASIC in
order to specify "Disk 1" the user will enter "DI1",]

Example:

Log Device File Name
File

10 OPEN 3, D1, "O:TEST,S,R"

The following table shows the relationship between device names and
device numbers.

TABLE
DEV#= o 1 2 3 4 5 6 7 8 9 10 11

DEVNAME= KB PRI SER Ul SPRI = - - D1 D2 D3 D4

KB refers to the keyboard/display devices; PRI is the parallel printer
output J3 on the interface board; SFR is the RS232 serial port J4; Ul is
a user vector at address $212 - $215; SPRI is a printer serial port off
J2; the drives D1-D4 are disks supported off the disk DIN comnector (J2).

Location $212 - $213 represent device '"Ul" wuser vector for input and
locations $214 - $215 is device "Ul" user vector for output. In both
cases the carry flag will be clear when opening and set when data
transfer is required. The user must preserve the registers specially in
data transfers. |

When a file is opened either in a High Level Language or machine code
the logical file and the device are entered in a table. The table
maintains up to 10 entries. The user can direct inputs or outputs of
data to come from any logical file in the table and therefore from the
specified device. If the device is a disk drive the 1logical file will
determine which file from the directory the user is working with. See
BASIC interface for more details. |

3.6 FILE MANAGEMENT
The file management is provided so the user can manipulate files on the
disk. The user can look up a directory of files on the disk, send files

to the screen or printer, erase files, format a new disk, etc.

The file management is entered through the "F1" key on the AIM 65.

Example:

14—

AH5050

<F1> D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(LR,M(RG,I(NI,V(AL,P(UT,G(ET,R(UN

The computer responds by displaying the menu of interactive commands in
the file manager. Each command is accessed by typing the first letter of
the command name. Following is a description of each of these commands.

3.6.1 DIRECTORY (D) :

This command will display the directory of files on the disgk. It lists
number of occupied sectors, file names and types of files. The file
names can be up to 15 characters long. The list can be directed to an
active device,

<F1>D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(LR ,M(RG,I(NI,V(AL,P(UT,G(ET,R(UN D

DEV=D1
OUT=(CR)

0000 "SAMPLE" 01 2A (Disk Name)
0001 "START UP" PRG (File Name)
0001 "IN1BASIC" PRG (File Name)

0640 FREE BLOCKS

£

3.6.2 TYPE (T)

This command will transfer Data on a sequential file on the diskette to a

specified output device. Typing of other file types such as program
(PRG) can also be done if the file name is followed by ",P,R". P stands

for program and R for read. But the typing of program files is not
recommended since these are binary files which contain data that the

terminal will decode as control commands resulting in erratic output.

Example:

<F1>D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(LR,M(RG,I(NI,V(AL,P(UT,G(ET,R(UN T

DEV=D1 FILE=TEST

OUT=(CR) (TO TERMINAL)
(TEXT DISPLAYED)

< (BACK TO MONITOR)

3.6.3 RENAME (N)

This command allows the user to change the name of a file once it is in
the disk directory. |

Example:
<F1>D(IR,T(YP,N{AM,S(CRTH,F(RMI,C(LR,M(RG,I(NI,V{AL,P(UT,G(ET,R(UN N

DEV=D1 FILE=NEWNAME=OLDNAME

~15-

AH5050

3.6.4 SCRATCH (S)

This command erases unwanted files from the disk. The blocks are made
available for new information. The user can erase files one at a time or
in groups by using pattern matching and/or wild cards. '

Example:
<F1>D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(LR,M(RG,I(NI,V(AL,P(UT,G(ET,R(UN S

DEV=D1 FILE=TEST

If the user had used "T#" for the file name all files starting with the
letter T would have been scratched.

3.6.5 FORMAT (F)

This command is necessary when using a diskette for the first time. Note
that when a brand new diskette is not formatted forthe first time all
other commands will produce errors. The command formats the entire

diskette with timing and block markers and creates the directory. The
name goes in the directory as the name of the entire disk. Formating
should take about one minute.

Example:
<F1>D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(LR,M(RG,I(NI,V(AL,P(UT,G(ET,R(UN F

DEV=D1 FILE=SAMPLE

3.6.6 CLEAR (C)

The clear command clears out the directory of an already-formatted
diskette, This is faster than re-formatting the whole disk. The name
goes into the directory as the name of the entire disk.

Example:

<F1>D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(LR,M(RG,I(NI,V(AL,P(UT,G(ET,R(UN C

DEV=D1 FILE=SAMPLE

3.6.7 MERGE (M)

This command allows the user to merge up to 4 files into 1 file on the
same disk.

Example:

<F1>D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(LR,M(RG,I(NI,V(AL,P(UT,G(ET,R(UN M

_16—

AH5050

DEV=D1 FILE=NEWNAME=0:FILE1,0:FILE2,0:FILE3,0:FILES

The "0:" must be specified between file names.

3.6.8 INITIALIZE (I)

If an error condition on the disk prevents the user from performing some
operations, this command will return the disk drive to the same state as
when powered up.

Example:
<F1>D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(LR,M(RG,I(NI,V(AL,P(UT,G(ET,R(UN I

DEV=D1
<

3.6.9 VALIDATE (V)

When files have been repeatedly stored and scratched they may leave small
caps on the disk, a block here and a few blocks there. These blocks
never get used because they are too small to be wuseful. The Validate
command will re-organize the diskette so the user can get the most <from
the available space.

The command also will collect the blocks from opened files which were
never properly closed. This command should never be used with a diskette
that uses random files since blocks allocated in random files will bDe
de-allocated.

Example:
<F1>D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(LR ,M(RG,I(NI,V(AL,P(UT,G(ET,R(UN V
DEV=D1
<

3.6.10 PUT (P)

This command is used to transfer data from the specified address in
memory to a file as a program type. The first 2 bytes record the
starting address in memory. The rest of the data is an image of the data
in memory. This command is used to put a machine code program into a
program file.

Example:
<F1>D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(LE ,M(RG,I(NT,V(AL,P(UT,G(ET,R(UN P

FROM=0300 TO=0FFF (HEX ADDRESSES . DEV=01 FILE=TESTER
<

~17~

AH5050

3.6.11 GET (G)

This command is the opposite of PUT. This command will load into memory
the specified file. The starting address in memory is the one specified
in the first 2 bytes of the file.

Example:
<F1>D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(LR,M(RG,I(NI,V(AL,P(UT,G(ET,R(UN_Q_

DEV=D1 FILF=TESTER

3.6.11 RUN (R)

The RUN command will load and run any file of the type Program (PRG).
These type ot files are stored on disk by the PUT command from the
monitor and the SAVEB commands in the BASIC or FORTH languages.

RUN is a powerful command since it can be used to rum Editor, Assemblers,
or user application programs. Note that programs that will run can be
created in BASIC or FORTH without the need for recompiling. This 1is an
interactive command in which the user is prompted with the device and
file name. The AH5050 also provides the capability for the user to
specify in software the file name to be run. See BASIC, FORTH and
machine language interfaces. -

Example:
<F1>D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(LR,M(RG,I(NI,V(AL,P(UT,G(ET,R(UN R

DEV=D1 FILE=TESTER

3.7 EXISTING SOFTWARE INTERFACE

Reading or writing files from the EDITOR, ASSEMBLER, MONITOR and BASIC on
the AIM 65 is done through the user vector. The user must type "U" after
the "OUT" or "IN=" prompts. This directs input/outputs through the user
vectors, which the software in the AH5050 uses to read/write to a file
in the floppy disk.

Since the AH5050 uses locations $0212-$025F for variables, the user must
not use locations lower than $0260 when the AH5050 is installed.

The following sections explain each of these interfaces.

3.7.1 MONITOR INTERFACE

Besides the file manager access from the Monitor, the wuser can use the
regular LOAD (U) and DUMP (D) commands to read or write object files
using the format given by the AIM 65. The object files have more
overhead than the binary files since they contain data for the number of
bytes in the record, address and check sum. Object files are used by PROM
programmers or other devices which may need to load several sections of
code into different portions of memory.

~18-

. ' AH5050

a) Monitor write example:

<D -

FROM = 500 TO=SFF

OUT=U (OUTPUT TO -AH5050)

DEV=D1 FILE=DEMO

MORE?Y (DUMP ADDITIOANL MEMORY ...)
FROM=700 TO=750 (UNDER SAME FILE)

MORE?N

D) Monitor read example:

<L>IN=U (LOAD TO MEMORY)
DEV=D1 FILE=DEMO

This will load object data into memory. The address to be loaded into
memory is included on each of the records.

It is a good practice to add to the file name an extension such as ".0BJ"
that mentions where the file was created from. The drawback is that the
user must specify it also when reading the file wunless something like

"DEMO*" is used.

-~

3.7.2 EDITOR INTERFACE
The user can Read or Write text files through the Editor by wusing the
'Read' and 'List' commands. The Editor buffer start address should not

be set under $260, in order to avoid conflict with the AH5050 variables.

a) Editor write example:

=CT> (GO TO TOP OF EDITOR)
=<{L> (LIST ALL LINES)

-

OUT=U (OUTPUT TO FLOPPY)
DEV=D1 FILE=DEMO2

END (PROMPT FROM EDITOR)

b) Editor read example:

CED>

EDITOR

FROM=300 TO=1000 (EDITOR BUFFER)
IN=U

DEV=D1l FILE=DEMOZ

3.7.3 ASSEMBLER INTERFACE

In order to use the ASSEMBLER with the AH5050, the user must have the
Assembler installed at $B0O00. The Assembler at $BO00 is the same as the
assembler offered by Rockell International at $DO0O0 but relocated to
$BO00 so the AH5050 Operating System can be installed at $DO0O0. This

~19-

AH5050

relocated assembler is offered by ABM. If RAM is available at $B0OOO the
assembler could be loaded from disk.

The source input (text file) can be entered from disk or from text in
memory. Only one of the two outputs of the Assembler (Object or Listing)
can be directed to disk at a time. The symbol table for the Assembler
should not be set lower than $260.

The AH5050 software permits the user to assemble more than one text file
by linking them with the ',FILE' directive. ,

When assembling a single text file, the user must terminate the source

program wit the '.END' assembler directive with no file-name appended.
This enables the second pass and closes files,

a) Single~file assembly example:

PORT=$4000 (FILE-NAME IN DIRECTORY=
*=$600 'DEMOA")

LDA #$45

STA PORT

.END (END ASSEMBLER DIRECTIVE)

On the other hand, when a text-file is too long to fit in the text Editor
buffer, the file can be divided into smaller text files and stored in
disk. In this manner, larger programs can be created. If all these text
files are to be assembled together, the '.FILE' and '.END' directives
with the next file-name appended are used. These directives tell the
software which file to open next and when to close the files. The
following example shows hows to assemble three text files 1linked by the
".FILE' directive.

b) Multi-file assembly example:

PORT=$4000 (FILE-NAME IN DIRECTORY=
¥*=$600 'DEMOA")

LDA #$45

STA PORT

.FILE DEMOB (CONTINUE ON DEMOB)

LDA PORT (FILE-NAME IN DIRECTORY=
EOR #$FF 'DEMOB')

STA PORT

.FILE DFMOC (CONTINUE ON DEMOC)

LDX #05 (FILE;NAME IN DIRECTORY=
LOOP JSR OUTPUT 'DEMOC')

DEX .

BNE LOOP

BRK - _
.END DEMOA (FILE-NAME OF FIRST FILE

~20-

AH5050
i.e. 'DEMOA' MUST BE GIVEN)

When assembling either a single text file or multiple test files from
disk, the user has the option to direct the object 'code to memory or
disk.

c) The following example will assemble a multi-text £file and ﬁat the
object back to the disk.

(5>

ASSEMBLER
FROM=800 TO=900 (SYMBOL TABLE)

IN=U (INPUT FIRST FILE
OF LINKED FILES)

DEV=D1 FILE=DEMOA

LIST?Y

LIST-OUT=(CR) (LIST TO TERMINAL)

OBJECT?Y

OBJECT--OUT=U

DEV=D1 FILE=DEMO-OBJ (TO FLOPPY)

3.7.4 BASIC LANGUAGE INTERFACE

In order to use BASIC with the AH5S050, the user must have the BASIC
language installed at $BOOO-$CFFF. If RAM 1is available at those
locations the BASIC Language could be loaded from disk.

If a BASIC program is going to be written for the first time, file
"INIBASIC' must be run first. This asures proper set up of the vectors in

the BASIC so the user program starts above $260 and there is no conflict
with the variables in the AHD050.

Fxample:

<F1> D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(CLR,M(RG,I(NI,V(AL,P(PUT,G(ET,R(UN
R ' -

DEV=D1 FILE=INIBAS

After this initialization the user is prompted for the memory size in
case some memory at the top should be reserved for other purposes. 1f
the user responds with <CR)>, the available memory is calculated.

It the user escapes from the BASIC program to the Monitor, reentering
BASIC can be accommplished by typing Key 6.

Following is a Brief description of added commands to the AIM 65 BASIC
language. OSome examples are also given to explain the potential of wusing
sequential, relative and random files. The loading of these files into
BASIC takes time because the BASIC has to tokenize the incoming data.

_21-

AH5050

3.7.4.1 EXISTING LOAD/SAVE

The existing 'Load' and 'Save' commands in the BASIC are used to read and
write source BASIC files.

a) Saving source BASIC program example:

" SAVE (CR) (SAVE COMMAND)
OUT=U (OUTPUT TO FLOPPY DISK)

DEV=D1 FILE=DEMO

b) Loading source BASIC program example:

LOAD (CR) (LOAD COMMAND)

IN=U

DEV;QL_ FILE=DEMO (AIM will load File from disk and display it on the
terminal)

3.7.4.2 LOADB/SAVEB

These new commands are used to read and write the already "tokenized"
program into the disk. Files are loaded/saved faster since there is no
compilation. .

a) Saving binary BASIC program example:

SAVEB (CR) (SAVE BINARY)
OUT=U (TO DISK)

DEV=D1 FILE=DEMO
b) Loading binary BASIC program example:

LOADB
TN=U
DEV=D1 FILE=DEMO

. The LOADB command will replace any existing BASIC file in memory. These
binary file programs are already in executable form. 5o the user can run
these type of files from the monitor using the run command.

Example:

¢F1> D(IR,T(YP,N(AM,S(CRTH,F(RMT,C(CLR,M(RG,I(NI,V(AL,P(PUT,G(ET,R(UN
R

DEV=D1 FILE=DEMO

If the file name for the user BASIC program saved with the command
'"SAVER' is 'STARTUP', the file will run automatically when the
microprocessor runs locations $D0O0O. The file will run automatically
from power up or reset if the changes to the monitor are made as
explained in Section 3.2. Note that the BASIC language must be installed
in $BOOO-$CFFF.

The new LOADB/SAVEB commands can be normally used instead of the existing

22

SN SO it

I,OAD/SAVE to develop the user prograims. But since the files are already
in executable form, they will not allow relocation of BASIC programs when

loaded by LOADB. If relocation 18 needed the user can use SAVE followed
by a LOAD. Relocating may be necessary when the memory is used for other
purposes also. This 1s very uncommonl. |

/

3.7.4.,3 NEW OPEN ;

In order to Read or Write data from devices the user must open a logical
file specifying the device and the file name. Up to 10 logical files can
be open simultaneously. -

Example:

10 OPEN 2,D1,"0:FILE1,S,W"
>0 OPEN 3,D1,"0:FILE2,S,W"
30 PRINT#2, "DATA TO FILE 1"
40 PRINT#3, "DATA TO FILE 2"

50 CLOSE 2: CLOSE 3

Iines 10 and 20 open two logical files (2,3) to device DI (8) as
Sequential files and to be Written into. The logical files number can be

from 2 to l4. Logical file 0,1 are used for the Load and Save commands.

When opening a file a replace option could be used if the file name
starts with "@" sign.

Example:
10 OPEN 2,D1,"0:@FILE1,S,W"

This will delete the old FILEl and replace it with data from the new
FILEL. -

3.7.4.4 NEW PRINT#

The PRINT# is used exactly as the existing PRINT command except the
logical number assigned 1in the OPEN command must be supplied. The
software will open the logical channel momentarily to output the data
specified with the PRINT# statement and close the logical channel so any

following outputs will go to the terminal.
Example:

05 A=Z

10 OPEN 1,D1,"DATA TO FILE1,S,W,"
20 PRINT#A, "DATA TO FILEL"

30 PRINT "DATA TO TERMINAL"

40 PRINT#A, "MORE DATA TO FILEL"
50 CLOSE A

The PRINT# command in this example works exactly 1ike the PRINT
statement, except that output 1s re—directed to the disk drive. All the

~23..

AH5050

formatting capabilities and rules of the PRINfVétatement for punctuation
and data types, apply here too. Therefore be careful when putting data
into your files, |

FORMAT FOR WRITING TO FILE WITH PRINT#:

PRINT#file#,data list

The file# is the one used in the OPEN statement wﬁen the file was
created. '

The data list is the same as the regular PRINT statement-a list of
variables and/or text inside quote marks. However, you must be
especially careful when writing data so it would be as easy as possible
to read back later.

When using the PRINT# statement, if you use commas (,) to separate items
on the line, the items will be separated by blank spaces, as if they were
being formated for the screen. Semicolons (;) do not result in any extra
spaces.

In order to more fully understand what is happening, here is a diagram of
a sequential file created by the statement OPEN 5,D1,"0:TEST,S,W":

String data entering the file goes in byte by byte, including spaces.

For instance, let's set up some variables with the statement A$= "HELLO";
B$= "THERE". Here is a picture of a file after the statement

PRINT#5,A%$;B$ is executed.

 H E L L O T H E R E CR eof
char 1 2 3 4 5 6 7 8 9 1011 12

CR stands for the CHR$ code of 13 (decimal), the carriage return, which
is PRINTed at the end of every PRINT or PRINT# statement unless there is
a comma or semicolon at the end of the line.

NOTE: Do not leave a space in PRINT#, and do not try to abbreviate the
command to ?#.

3.7.4.5 NEW INPUT#

The INPUT# is used exactly as the existing INPUT command except inputs
come from the logical file specified in the OPEN statement.

The software will open the specified logical file momentarely, read data
into the variables and close the inputs so following data will come from
the keyboard.

Example:

05 A=2 ' -
10 OPEN A,D1,"0:FILE1l,S,R"
20 INPUT# A, D$

30 CLOSE A

AH5050

—

FORMAT FOR INPUT# STATEMENT:
INPUT#file#,variable list

When using the INPUT# to read data, there should be a way to tell whether
the input is supposed to Le one long string or made up of multiple
strings. The file requires string separators. Characters used as
separators include the CR, a comma or a semicolon. The CR can be added
easily by just using one variable per line in the PRINT# statement, since

the system puts one there automatically. The statement PRINT# 5,A%:
PRINT# 5,B$ puts a CR after every variable being written, providing the
proper separation for a statement like INPUT#5, A$,B$. Also a 1line like
7Z8= " ". PRINT#5,A%$:Z$;B$ can be used, which will also conserve space
.The example file after such a line looks like this:

H E L L O , T HE R E CR eof
char 1 2 3 4 5 6 7 8 9 1011 12 13

Putting commas between variables results in extra space on the disk being
used., A statement like PRINT#5, A$,B$ makes a file that looks like:

H E L L O T H E R E CR eof

L

char 1 2 3 4 5 6 7 8 9 1011 12 13 14

You can see that much of the space in the file is wasted. Also looks 1like
one single variable when you try to read it.

The moral of all this is: take care when using PRINT# to format data and
separate variables so it will be in order for reading back by an INPUT

statement.

Numeric data written in the file take the form of strings, as if the STR$
function had been performed on them, The first character will be a blank
space if the number is positive, and a minus sign (-) dif the number is
negative. Then comes the number, and the last character is a SPACE
character. This format provides enough information for the INPUT#
statement to read them in as separate numbers if several are written with
no special separators. |

Here is a picture of the file after the statement PRINT#5, 1;3:;5;7 is
performed: |

1 3 5 7 CR eof
char 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3.7.4.6 NEW CHOUT

The PRINT# can be used to output data to any logical file. But after the
output the software resets the logical channel so any following PRINTs
without the "#" sign will be directed to the terminal. Since the PRINT#
statement must open and close the logical channel for every print
statement, this imposes an overhead when a lot of data is sent to that

_25..

AH5050

logical file. The CHOUT command sets the 1logical channel so PRINT
statements will send data to the logical file. It is the users
responsibility to close the 1logical channel when done, so following
outputs will be sent to the terminal. There are two ways to reset the
logical channel, one by typing "CHOUT 255" and the other by the PRINT#
command. |

Ixample:

10 OPEN 5,D1,"0:FILE1,S,W"

20 CHOUT 5

30 FOR T=1 TO 5

40 PRINT "DATA TO FILE #":I: ","

50 NEXT

60 PRINT#5, "END" : REM CLOSE CHANNEL
70 PRINT "THIS COES TO TERMINAL"

80 CLOSE 5 : REM CLOSE FILE

3.7.4.7 NEW CHIN

This is the opposite of CHOUT and is used to open the logical channel
only once so normal INPUT statement can be used. This lowers the
overhead when a lot of data is® to be read.

Example:

10 OPEN 3,D1,"0:FILEI,S,R"
20 CHIN 3

30 FOR I=1 TO 5

40 INPUT A$(I)
50 NEXT _
60 CHIN 255 : REM CLOSE CHANNEL
70 CLOSE 3 : REM CLOSE FILE

To close the input channel the user can do 'CHIN 255' or do a last INPUT#
of data.

3.7.4.8 NEW CMD

This command is used to send instructions to the intelligent drive. The
command is normally wused for Random and Relative files to set the
pesition for the Track, Sector and Pointer where the BASIC will read or
write data. For now we will give the general format. For more detail see
Random and Relative files.

Example:

- 10 OPEN 5,D1,"#" :REM RANDOM FILE.
20 CMD D1, "B-R:" 5;0;18;2

BLOCK~-READ LOG-FILE TRACK SECTOR

—26—

T L W Y L W

3.7.4.9 NEW STATUS

The status command is intended to read the information from a disk drive.
The user can determine if a record exist, if it is a non-existing file,
or any error in general. Look at Appendix B for all possible errors. If
an error occurs and the user does not read the status with this command
the drive LED will blink until the usérlexecutes the STATUS command. The

STATUS command will read an error number, descri

Example:

10 STATUS D1,ER,D$,TK,SE
20 PRINT FR,D$,TK,SE

Where ER is an integer error number, D$ is a string description, TK is
the track integer and SE is the sector integer.

The user can print the variable contents after GSTATUS it desired. The
STATUS command does not print them automatically because under software
control this is not always desired, for example when a record does not

exlist.

3.7.4.10 NEW CLOSE :

It is very important that the user CLOSEs files once he is finish wusing
them. Closing the file causes the DOS to properly allocate blocks and to
finish the entry in the directory. If the user does not CLOSE the file,

all the data will be lost!

Example:

50 CLOSE 3 (Close logical file 3)

3.8 MACHINE LANGUAGE SUBROUTINES

. This section illustrates how to read and write data through the AH5050
subsystem using assembly language programs. See Appendix C for a list of
all the subroutines and their addresses.

There are different levels of entry. For example the user may want just
to run a file without concerning himself with the opening, loading, and
closing before running the file. On the other hand the user may want to
open many files and work with all files at the same time.

Also some subroutines will ask questions on the terminal about the device
and file name. These are called interactive subroutines. Other

subroutines assume pointers and filenames are already set under software
control so no questions are asked.

3.8.1 FUNCTION NAME: RUN

_27~

AH3050

Arguments: none
Registers affected: .A,.X,.Y

This routine opens, loads, closes and runs the program file given by the
user., It prompts the user for DEVICE and FILE name before attempting to
open any file. The only devices allowed are 'Dl, D2, D3, D4' since the
subroutine has been optimized for speed to read from disk. This routine
is the one executed by the "RUN" command in the File Manager.

Example:

JSR RUN ;Run file given by user
JMP MONI :Back to Monitor if does
;not exitst

3.8.2 FUNCTION NAME: GET

Arguments: None.
Registers affected: .A,.X,.Y

This routine does the same as the 'RUN' function except that it is a
subroutine and it does not run the program, instead it always returns to
the user. This routine is uset by the 'GET' command in the file manager.

Example:

JSR GET sLoad file program only.
JMP MONITOR ;Back to AIM Monitor.

3.8.3 FUNCTION NAME: RUNSET

Arguments: A=Log Fil, X=DEV, FNLEN=FIL LEN, FNADR=FILENAME PTR.

Registers affected: A,X,Y

This routine is similar to 'RUN' routine except it does not ask questions
on the terminal, Instead parameters are passed to the routine and the
file name length and pointer are expected to be set at variables FNLEN
and FNADR previous to calling the subroutine. The pointer and length can
be set by the SETNAME routine. To call SETNAME the Accumulator contains
the file length and X,Y the address where the file name is.

Example:

This is an implementation of the power up routine.

LDA #NAME2--NAME sLength of file name

LDX #<NAME sAddress of file name

LDY #>NAME | *

JSR SETNAM +Set FNLEN & FNADR Variables.
LDA #00 sUse logical file=0

~28-~

AH5050
L.DX #08 :DEVICE #8 (D1)
JMP RUNSET
NAME .BYT 'STARTUP,P,R' ;File name
NAMEZ2 |

3.8.4 FUNCTION NAME: GETSET -

Arguments: A=Log Fil, X=D3V, FNLEN=FILFE LEN, FNADR=FILE NAME PTR
Registers affected: A,X,Y

This is basically the same routine as RUNSET except the program is loaded
into memory but the code is not run.
3.8.5 FUNCTION NAME: WHEREI

Arguments: None

Registers: A,X,Y

The previous functions are intended to run one program from the disk and
not to manipulate file data. The WHEREI function is used to open files
for input so data can be input from the device specified through the
"INALL' routine. The WHEREI function will ask questions on the terminal
regarding the device and file names requested. '

Example:

JSR WHEREIL sprompt for input device & file desired.

3.8.6 FUNCTION NAME: WHEREQ

Arguments: None
Registers: A,X,Y,

This function is the counterpart of 'WHEREI'. WHEREQO opens a file for
output so data can be output to the specified device through the 'OUTALL'
routine,

3.8.7 FUNCTION NAME: OPEN

Arguments: A=log FILE, X=DEV, FNLEN=FILE LEN, FNADR=NAME ADR PTR
Registers Affected: A,X,Y

~29-

AH5050

WHEREI and WHEREQO are fine if the user wants the operator to enter the
device and file name from the keyboard. Sometimes the user wants to
specify the device and file name under software control, with no operator
intervention. In this case the user must use the OPEN function.

The Open routine opens a file and logs-on the logical file and device
into a table. Parameters for the logical file and device are passed to
the routine. Also the file name pointer and file name length must be set
previous to calling this routine. After a 1logical file is opened
routines such as 'CHIN', 'CHOUT' set the I/O channel flags so the
routines 'INALL' and 'OUTALL' can direct the data to the proper device.

Example:

LDA #NAME2-NAME ;Length of file name.

LDX #<NAME sAddress of file name.

LDY #>NAME

JSR . SETNAM +Set FNLEN, FNADR

LDA #05 sLogical File (2-14)

LDX #08 +Dev #

JSR OPEN sLogon logical file,dev and open device.

»

" i,

The subroutine SETNAME will set the length of the file given in the
Accumulator into FNLEN and the address given by X & Y into FNADR. Then
the user opens the file where the Accumulator specifies the 1logical file
and X the device number from the allowed devices in section 3.5.

3.8.8 FUNCTION NAME: INALL

Arguments: None
Registers affected: Acc

This function reads a byte into the ACCumulator register from the open
logical channel,

Example:
LDY #$00 sPrepare counter
LOOP JSR INALL s Input from Keyboard defaulted log channel.
STA DATA,Y s Store
INY
CMP #CR sterminate with CR
BNE LOOP

3.8.9 FUNCTION NAME: OUTALL

Arguments: Acc=data
Registers Affected: None

~30-

AH5050

This function outputs a byte from the ACCumulator register to the open
logical channel which in this case is a centronics printer. |Notice. that
no file name is required since the output to the printer does not check

for it. ‘
Example:

LDA #03 :Logical file 03 *

LDX #01 sdevice=01 (Centronics PRInter)

JSR OPEN s OPEN DEV=01

LDA #03 ;Set output channel=log file 03

JSR CHOUT

LDY #00

LOOP LDA DATA,Y sData from memory
JSR OUTALL ;To printer
CPY #05

3.8.10 FUNCTION NAME: CLOSE -

Arguments: Acc=lLogical file
Registers Affected: A,X,Y

This function closes the logical file specified in the Accumulator. This
number is the same used when the file was opened using the OPEN command.

Example:

LDA #03
JSR CLOSE

3.8.11 FUNCTION NAME: CLOALL

Arguments: None
Registers Affected: A,X,Y

This routine calles CLRCHN and closes all logical files open. Therefore

there is no need to load into the Accumulator the logical file. and call
CLOSE for each file open.

Example:

JSR CLOALL

> AW

-31-

AH5050

3.8.12 FUNCTION NAME: CLRCHN

Arguements: None
Registers Affected: A,X,Y

This routine closes the Input/Output logical channels so they default to
the keybord and display terminal. This routine does not affect the
logical files and devices in the logical table. Therefore CHIN, CHOUT
can be used to switch the input or output channels to any of the 1logical
files that are still open.

Example:

JSR CLRCHN ;Close I/0 Channels

3.8.13 FUNCTION NAME: CHIN
Arguments: ACC=Log file.
Registers Affected: A,X

This routine opens the input channel to the device which matches the
logical file specified in the Accumulator. This routine is used after
logical files are opened and before the 'INALL' routine is called.

Example:

LDA #05 s Prepare to input from
JSR CHIN sLogical file #05

3.8.14 FUNCTION NAME: CHOUT

Arguments: ACC=Log File
Registers Affected: A,X

This is the counter part of CHIN for the output channel,

Example:

LDA #06 sPrepare for output from
JSR CHOUT ;Logical file #06

~32..

AH5050

A.1 DISK FORMAT

N
&{}} \
«
_ | AT
. \S"_"I-
W
N
~
LQ? -

= \ NOTE

SECTOR
' Not to scale
y, | R | \
| N\
// N\
/ POINTLRS TO LINK N\
/7 TOGLUTHER aLL BLOCKS \

y WiTHIN A HILL \‘

| | 1 | : ' CHLOK- | T i C4BYTLS CH!-{"H-‘ m;
SYNC { 08 | 1Dt D2 | TRACK SLCTOR | "0 0™ CGAP L SYNC) 078 = 0 = | Top pry SUM _

. Format: Expanded View of a Single Sector

AH5050

A.4 DIRECTORY HEADER

Track 18. Sector 0 ' -

BYTE | CONTENTS DEFINITION
- 144-161 . Disk name padded with shifted spaces.
162-163 l Disk 1D. o
ml 64) 160 Shifted space. .
165-166 50.65 ASCII representation for 2A which is DOS
‘ version and format type.

Shifted spaces.

0 Nulls, not used.

| Note: ASCI characters may appear in locatons 180 thru 191 on some disketies.

_— s R i e O e

A.5 DIRECTORY FORMAT

e i i ey——— A b

Track 18. Sector I

— T e e
, BY TE DEFINITION
|
Y T ; Track and sector of next directory block

2.5 - *File entry |
| 33-63 | *File entry 2 _—i

— — L A

H6-9 *File entry 3 l

- OK-1.27 *Fie entry 4
— skl Ly iyl —— — .+___....——— - —— —

130-159 *File entry 5

162-191 *Fie entry 6 -
S — e S —

194-123 - *Fie entry 7

- NI S : — IR

- 226-22_5 - Jﬂ*[;ueqemry 8 |

AH5050

A.6 DIRECTORY ENTRY

———————

BY TE | CONTENTS g DEFINITION
0 | J8+type - File type OR’ed with 530 to indiu:’lle properly
i - closed tile.
| - TYPES: 0= DELeted
| = SEQential |
:r Y= PROGram =
i 3=0LSER
; 4 = RELative __"
; |

Track and sector of Ist data hlock.

3-18 . File name padded with shitted spaces.
R i P - R —
19-20 Retative file onlv: track and sector for first side
. sector block.
21 Il Relative tile only: Record size.
eyl e g A —

e,

- et bl e et o EES——EI S SRR e e s |
Track ard sector of replacement file when OPENG@

15 in eftfect.

— L] |

18.29 | | Number of blocks in file: low by te. high by te.

—h-m-“'

A.7 SEQUENTIAL FILE FORMAT

— —

. ——— U —

Track and sector of next sequential data block.

2-236 254 bytes of data with carriage return as record terminators.
PO

A.8 PROGRAM FILE FORMAT

| BYTE
2.256

DEFINITION

k_ Track and sector of mxt block. in pmgram ﬁle

254 by tes of program info stored in CBM memc)ry format (wnh
ky words tokenized). End of file is marked by three zero bytes.

A.9 RELATIVE FILE FORMAT

el ——--m

il i il W

R— Ly

DATA BLOCK
I —]
BYTE DEFINITION
E 0.1 Track and sector of next “data block. T N
1236 234 by tes of data. l':mpty records contain FF (all binary ones) in
the first by te followed by 00 (binary all zeros) to the end of the
record. Partially filled reu.ords are padded with nuils (00).
SIDE SECTOR BLOCK
BYTL DEFINITION
— U ———
0-1 Track and sector of next side sector block.
) Side sector number (0-3),
e T S e —
3 Record lenglh l
r—-——-———-——"—""‘—r’"—_ e
4-5 Track and sector of tirst 51de s€C10f (number O}
i 1 x-S
6.7 Tran,k and sector of second snde sector (number 1)
39 Tragk and sector c)f thll’d mde sector (number J)
+ 10-11 Track and sector ot fourth suie sector (number 3)
12-13 Track and sector of fifth side sector (number 4) -1
14-15 Track and sector of six th sxde sector (number 5) !
NN TE—— —— R —
16-256 Track and sector pomters to 120 data blocks :
U ¥ S

L S il M --———ri I P ey S sy T iy il

AH5050

O OO~\INMN=D

10

OK, no error exists

Files scratched response. Not an error condition.

APPENDIX B
ERROR MESSAGES

No error condition given by drive.

Over 10 files
Log file opened
No file opened
lst byte eof
DEV not present

11-19 No error condition

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
39
50
51
52
60
61
62
63
04
65
66
67
70
71
72
73
74

Block header not found on disk
Sync character not found.

Data block not present.
Checksum error in data.
Byte decoding error
Write-verify error.

Attempt to write with write protect on.
Checksum error in header
Data extends into next block.

Disk ID mismatch. |
General syntax error,
Invalid command

Long line

Invalid filename

no file given

Command file not found.
Record not Present.
Overflow in record,
File too large.

File open for write.,
File not open,

File not found.

File exists.

File type mismatch

No block.

Illegal track or sector.
I1legal system track or sector

No channels available
Directory error.

Disk full or directory full. |
Power up message, or write attempt with DOS Mismatch

Drive not ready. (8050 only)

AH5050

E848 WHEREI ~-- open input file: ask dev& name
E871 WHEREO --- open outside file; ask dev & name

DFEB SETNAM -— set variables FNLEN & FNADR used by OPEN
DFEE OPEN -—- open file; A=log, X=dev, FNLEN=lenname,

FNADR=nameprt (name,type,r/w)

E993 INALL --- input one byte from logical file
E9BC OUTALL --- output one byte from logical file

DFF1 CLOSE -—- close logical file; Acc=log file

DFF4 CLOALL -—- close all log files

DFF7 CHIN —-- open logical channel for input; Acc=log file
DFFA CHOUT --- open logical channel for output; Acc=log file

DFFD CLRCHN —-- close both I/0 channels & default to terminal

Additional commands which are transparent to the user are included

the AH5050 floppy subsystem., They provide functions
from the Editor, Assembler, Monitor, BASIC and FORTH.

~36—

for

read/write

AH5050

into
data

S J3

7406 2 R4 _
m@@@ e 3 1S TROBE J2- DIsSK INTERFACE

<+
+5 JX- PRINTER INTERFACE

Tl - AIM &S5 APPLICATION CONNECTOR

R2 |

J4- RE-2BZC INTERFACLE
TE-AIM G5 EXTENDED APPLICATION CONMELTCR

AlM &S
EXTENDED APFLICATION
CONA Ll 1O

P AL Oy Lk
SIOGNALS e T

R g i b R I el e e il Ay el el ¢ LA ol e P A + . ool POt i v -l iy . B " —

B R TN, BT ey

- m—n _“___,.: -]
C MR N N e
L A ann . A . B
‘_T; & WR N W P WE ae
C T :;;' -:_ S“tems ;
e <1 7 — - - sumcnren -

1) |
AL E’ :

s g e S i LY S AR o AN Rty g . gl R P M T . Ta PR gt T M T e PANCE P71 b

cro |21

col |

~{ | '
6?‘4 L sttt o o e . e e e e l . z &ND

TTY PTRK RTN&LS '

AN AT SO L —— o I 1. L £ 2 70

CowvmvEST 70
TERMINAL

b)

DAl RESETN S AFE TRW /4 WATT
20 AL LAPALITOR. ARL 1QWF
NYALL SIGNALS FROM T LONNELT TO T8

NOTES ! UNLESS OTRERNWIISL SPECIiLD

AH5050

APPENDIX C
COMMAND SUMMARY

C.1 FILE MANAGER COMMANDS

D(IR ——— list directory _

T(YP —-—— type contents of file

N(AM ~—— rename a file 3
S(CRTH ——— scratch a file from directory

F(RMT ——- format entire new diskette

C(LR ——— clear directory from all files

M(RG -—— merge up to 4 files

I(NI —-- initialize drive as power up

V(AL --— validate diskette, collect unused space
P(UT -—— put a binary file into disk

G(ET --— get binary file from disk into memory
R(UN —-—— run binary disk file

C.2 NEW BASIC COMMANDS

SAVEB --— save binary basic program

LOADB —~- load binary basic program

SYS -—— execute machine language program

OPEN ——— open logical file. sequential, prog, relative, user
CLOSE ——- close logical file

PRINT# —-—— print data to logical file

INPUT# ——— input data from logical file

CHOUT -— open logical channel for output

CHIN -—— open logical channel for input

EXEC —--— execute binary basic file

CMD —— send commands to drive, for random relative files
STATUS -—— read error status from drive

C.3 NEW FORTH COMMANDS

SAVEB ——— save binary forth program

OPEN" -—— open logical file

CLOSE -—— close logical file

CHOUT ——- set logical file for output channel
CHIN --~ set logical file for input channel
EXE" -—— execute binary forth file.

C.4 ASSEMBLY SUBROUTINE COMMANDS
ADDR COMMAND DESCRIPTION

DFDC RUN --— open, load, close & run program file; ask dev, name.
DFDF GET ——— open, load, close program file; ask dev, name
DFE2 RUNSET --- open, load, close & run program file;
set ACC=log, X=dev ,FNLEN & FNADR
DFE5 GETSET --- open, load, close program file; set like RUNSET

~35-

